您现在的位置:榆林第二实验中学〓陕西省绥德师范学校【官网】 >> 教研室 >> 课堂内外 >> 正文内容

数学知识速记口诀

文章来源:1 作者:6 发布时间:2010年06月30日 点击数:

 

 

 

立体几何知识速记口诀  

点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

 

 数列知识速记口诀  

等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

      首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

三角函数知识速记口诀  

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

 

 

排列、组合、二项式定理知识速记口诀  

加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

 

不等式知识速记口诀  

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

平面解析几何知识速记口诀  

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

立体几何, 点线面体。 重点培养, 想象能力。
公理有六, 定理三十。 线线面面, 相互关系。
线在面内, 面过线去。 两面相交, 交线唯一。
确定平面, 公理号三。 需要三点, 不能共线。
三个推论, 确定平面。 相交平行, 线外一点。
两线关系, 空间三种。 异面直线, 相交平行。
平行传递, 等角定理。 空间平面, 都能成立。
异面直线: 夹角距离。 平移造角, 垂直构距。
位置确定, 角距唯一。 亦可转化, 线面距离。
线面关系, 相交平行。 线在面内, 公理判定。
线面平行, 线线平行。 判定性质, 方法反证。
线面垂直, 判定定义。 垂直一面, 诸线平行。
垂线斜线, 射影定理。 线面夹角, 最小唯一。
三对垂线, 正逆定理。 用途极广, 垂直依据。
两个平面, 相互关系。 平行相交, 垂直特例。
线面平行, 面面平行。 判定性质, 正逆沟通。
面面相交, 成二面角。 判定大小, 用平面角。
顶在棱上, 边在面内。 垂直于棱, 大小确定。
线面垂直, 面面垂直。 互相转化, 彼此联系。
异面直线, 两点距离。 沟通五量, 知四求一。
空间线面, 位置关系。 立几基础, 推理依据。
理解概念, 掌握定理。 夯实基础, 继续学习。
柱锥台球, 正多面体。 性质作图, 面积体积。
平行六面, 长方正方。 空间勾股, 对角线长。
柱锥台体, 蕴含联系。 彼此转化, 寻根究底。
翻折展平, 切割补形。 降维转化, 类比异同。
截面问题, 须用公理。 确定顶点, 化为平几。
祖堩原理, 长方体积。 三棱柱锥, 切补相依。
正多面体, 空间五种。 欧拉定理, 连续变形。
立几平几, 联系紧密。 对比学习, 提高效率。

    网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)